

Cambridge IGCSE[™]

CHEMISTRY 0620/21

Paper 2 Multiple Choice (Extended)

October/November 2020

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

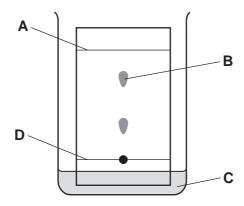
INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

- 1 Which gas has the slowest rate of diffusion?
 - **A** H₂
- B NH₃
- C CH₄
- D CO_2
- 2 A mixture of colourless amino acids is separated using chromatography.

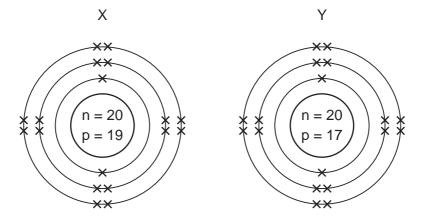

The solvent used is propanol.

The chromatogram is sprayed with a locating agent.

Which row describes the purpose of the propanol and the locating agent?

	purpose of propanol	purpose of locating agent
Α	to make the individual amino acids visible	to prevent the amino acids moving any further
В	to move the amino acids up the chromatography paper	to make the individual amino acids visible
С	to move the amino acids up the chromatography paper	to prevent the amino acids moving any further
D	to prevent the amino acids moving too far up the paper	to make the individual amino acids visible

- **3** Which piece of apparatus can only measure a single fixed volume?
 - A 250 cm³ beaker
 - **B** 50 cm³ burette
 - **C** 100 cm³ measuring cylinder
 - **D** 25 cm³ pipette
- 4 In the chromatography experiment shown, which label represents the solvent front?

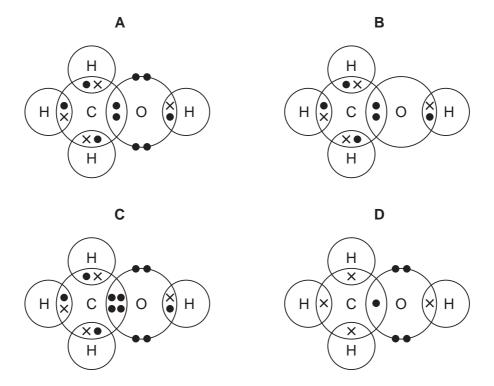

5 The atomic structure of four particles are shown.

	electrons	protons	neutrons
Р	18	17	18
Q	18	17	20
R	17	17	18
S	17	17	20

Which particles have the same chemical properties?

- A P and R only
- **B** P and S
- **C** P, Q and R
- **D** R and S

6 The arrangements of the electrons in two ions formed from elements X and Y are shown.



Which equation represents the reaction between elements X and Y?

- **A** $X_2 + 2Y \rightarrow 2X^+ + 2Y^-$
- **B** $X_2 + 2Y \rightarrow 2X^- + 2Y^+$
- $\textbf{D} \quad 2X \ + \ Y_2 \ \rightarrow \ 2X^- \ + \ 2Y^+$

4

7 Which diagram shows the outer shell electron arrangement in a molecule of methanol, CH₃OH?

- **8** Which statement about silicon dioxide, SiO₂, is correct?
 - **A** It conducts electricity because it contains free electrons.
 - **B** It is a macromolecule with four oxygen atoms bonded to each silicon atom.
 - **C** It is a simple covalent molecule.
 - **D** Its structure is similar to graphite.
- **9** Rubidium is in Group I of the Periodic Table and bromine is in Group VII.

Rubidium reacts with bromine to form an ionic compound.

Which row shows the electron change taking place for rubidium and the correct formula of the rubidium ion?

	electron change	formula of ion formed
Α	electron gained	Rb⁺
В	electron gained	Rb⁻
С	electron lost	Rb⁺
D	electron lost	Rb⁻

- 10 Which statement explains why graphite is used as a lubricant?
 - All bonds between the atoms are weak.
 - It conducts electricity. В
 - C It has a low melting point.
 - Layers in the structure can slide over each other.
- 11 Sodium carbonate reacts with sulfuric acid to form carbon dioxide, water and a sodium salt.

An incomplete equation for the reaction is shown.

$$Na_2CO_3 + H_2SO_4 \rightarrow CO_2 + H_2O + \dots$$

What is the formula of the sodium salt?

- $A Na_2(SO_4)_2$
- **B** $Na(SO_4)_2$ **C** Na_2SO_4 **D** $NaSO_4$
- **12** The relative atomic mass of chlorine is 35.5.

When calculating relative atomic mass, which particle is the mass of a chlorine atom compared

- A a neutron
- **B** a proton
- C an atom of carbon-12
- **D** an atom of hydrogen-1
- 13 What is the empirical formula of an oxide of iron, formed by reacting 2.24 g of iron with 0.96 g of oxygen?
 - A FeO

- **B** Fe_2O **C** Fe_2O_3 **D** Fe_3O_4
- 14 Which reaction takes place at the cathode during the electrolysis of molten nickel(II) chloride?

A
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$

$$\mathbf{B} \quad 2\mathbf{C}l^{-} \rightarrow \mathbf{C}l_{2} + 2\mathbf{e}^{-}$$

C Ni
$$\rightarrow$$
 Ni²⁺ + 2e⁻

D
$$Ni^{2+} + 2e^- \rightarrow Ni$$

15 Sodium nitrate is added to water in a beaker and stirred until it dissolves.

At the end of the experiment, the beaker feels cold.

Which row describes the reaction?

	temperature of solution	type of reaction
Α	decreases	endothermic
В	decreases	exothermic
С	increases	endothermic
D	increases	exothermic

- **16** Which substance does **not** require oxygen in order to produce energy?
 - A coal
 - **B** hydrogen
 - C natural gas
 - **D** 235U
- **17** Ethene reacts with hydrogen to form ethane.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–C	+350
C–H	+410
H–H	+436
C=C	+614

What is the energy change for the reaction?

- **A** -290 kJ/mol
- **B** -120 kJ/mol
- C +120 kJ/mol
- **D** +290 kJ/mol

18 A sign displayed in a flour mill is shown.

Which statement explains why there is a danger of explosion in a flour mill?

- A Flour burns very quickly because it is a fine powder.
- **B** Flour is a catalyst for combustion.
- **C** Flour mills get hot and speed up the rate of combustion.
- **D** The combustion of flour is exothermic.
- **19** A student investigates the effect of concentration on the rate of reaction between calcium carbonate and hydrochloric acid. He follows the method shown.
 - Place 1 g of calcium carbonate in a conical flask.
 - Add excess hydrochloric acid.
 - Let the reaction continue until no more gas is made.
 - Repeat the experiment with different concentrations of hydrochloric acid.

Which essential step has been left out of the method if he is to work out the rate of the reaction?

- A heating the reaction mixture
- B placing a bung in the flask
- C timing the reaction
- **D** using a catalyst

20 The reaction between sulfur dioxide and oxygen is shown.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The reaction is exothermic.

Which of the changes shifts the position of equilibrium to the right?

- 1 Increase the concentration of oxygen.
- 2 Increase the pressure.
- Increase the temperature.
- **A** 1, 2 and 3
- **B** 1 and 2 only **C** 1 and 3 only
- 2 only

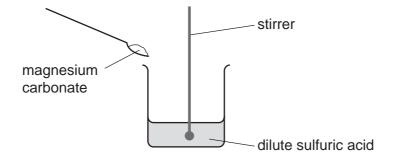
21 The reaction between chlorine and bromide ions is a redox reaction.

$$Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$$

What is the change in oxidation state of the reducing agent in this reaction?

- \mathbf{A} -2 to 0
- **B** -1 to 0
- **C** 0 to −1
- **D** 0 to +1

- 22 What is a characteristic of acids?
 - A Acids turn methyl orange indicator yellow.
 - **B** Acids have a high pH value.
 - Acids react with ammonium salts to give ammonia gas.
 - **D** Acids react with carbonates to produce salts.
- **23** Zinc oxide is an amphoteric oxide.


Which row describes the reactions of zinc oxide?

	reaction with alkalis	reaction with acids
Α	✓	✓
В	✓	X
С	x	✓
D	X	X

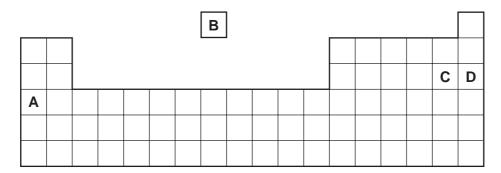
© UCLES 2020

24 A student carries out an experiment to prepare pure magnesium sulfate crystals.

The diagram shows the first stage of the preparation.

He adds magnesium carbonate until no more reacts.

Which process should he use for the next stage?

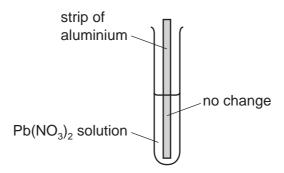

- A crystallisation
- **B** evaporation
- **C** filtration
- **D** neutralisation
- **25** Elements P and Q have the same number of electron shells.

Q has more electrons in its outer shell than P.

Which statements are correct?

- 1 P and Q are in the same group of the Periodic Table.
- 2 P and Q are in the same period of the Periodic Table.
- 3 P has a greater tendency to form positive ions than Q.
- 4 The oxides of Q are more basic than those of P.
- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4
- **26** The positions of four elements in the Periodic Table are shown.

Which element is a gas that displaces iodine from sodium iodide?


27 A flammable gas needs to be removed from a tank at an industrial plant.

For safety reasons, an inert gas is used.

Which gas is suitable?

- A argon
- **B** hydrogen
- C methane
- D oxygen
- **28** A strip of aluminium is placed into a test-tube containing aqueous lead(II) nitrate and left for several minutes.

Aluminium is higher than lead in the reactivity series.

Which statement explains why lead is **not** displaced by this strip of aluminium?

- **A** A thin insoluble layer of aluminium nitrate forms on the aluminium.
- **B** Nitrate ions are reduced in aqueous solution.
- **C** The ionic bonds between lead and nitrate ions are too strong.
- **D** There is an unreactive oxide layer on the aluminium.
- 29 Which statements about the metal zinc are correct?
 - 1 It is extracted from the ore bauxite.
 - 2 It is used to galvanise steel.
 - 3 It is used to make the alloy brass.
 - 4 It reacts with dilute hydrochloric acid to produce hydrogen gas.
 - A 2 and 3 only
- **B** 1, 2 and 4
- **C** 1, 3 and 4
- **D** 2, 3 and 4
- **30** What is the symbol of the metal used in the manufacture of aircraft because of its strength and low density?
 - **A** Al
- **B** Cu
- **C** Fe
- **D** Zn

31 Ammonia is manufactured using the Haber process.

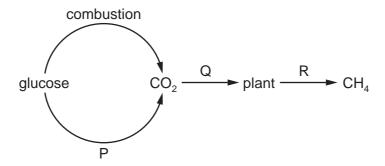
Which statement about this process is correct?

- A The catalyst used for this reaction is vanadium pentoxide.
- **B** The hydrogen used is extracted from air.
- **C** Using a high pressure increases the yield of ammonia.
- **D** Using a high temperature increases the yield of ammonia.
- **32** Iron can be protected from rusting by attaching a piece of a more reactive metal, e.g. magnesium, to the iron.

Which equation represents the reaction that takes place?

A Fe(s)
$$\rightarrow$$
 Fe²⁺(aq) + 2e⁻

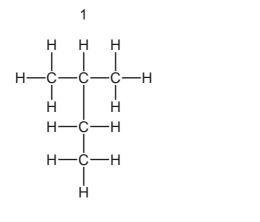
B
$$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$$


C
$$Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$$

D
$$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$$

33 Which row describes two uses of sulfur dioxide?

	use 1	use 2
Α	bleaching paper pulp	neutralising acidic industrial waste
В	bleaching paper pulp	preserving food and drink
С	extracting iron from hematite	neutralising acidic industrial waste
D	extracting iron from hematite	preserving food and drink


34 Part of the carbon cycle is shown.

What are processes P, Q and R?

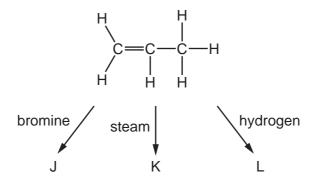
	Р	Q	R
Α	decomposition	respiration	photosynthesis
В	respiration	photosynthesis	decomposition
С	respiration	decomposition	photosynthesis
D	photosynthesis	respiration	decomposition

35 The structures of four organic molecules are shown.

Which molecules are structural isomers of structure 1?

- **A** 2 and 4
- **B** 2 only
- **C** 3 and 4
- **D** 3 only

36 Which chemical equation for the substitution of an alkane with chlorine is correct?


A
$$C_3H_8 + Cl_2 \rightarrow C_3H_7Cl + HCl$$

$$\mathbf{B} \quad \mathsf{C}_3\mathsf{H}_6 \, + \, \mathsf{C} \mathit{l}_2 \, \rightarrow \, \mathsf{C}_3\mathsf{H}_6\mathsf{C} \mathit{l}_2$$

C
$$C_3H_8 + Cl_2 \rightarrow C_3H_6Cl_2 + H_2$$

D
$$C_3H_6 + Cl_2 \rightarrow C_3H_5Cl + HCl$$

37 Propene is an alkene that reacts with bromine, steam and hydrogen as shown.

What are the products of these reactions?

	J	К	L
Α	bromopropane	propanol	butane
В	dibromopropane	propanoic acid	propane
С	dibromopropane	propanol	propane
D	bromopropane	propanoic acid	butane

38 The flow chart shows the preparation of ethanol and some important chemistry of ethanol.

What are X, Y and Z?

	X	Υ	Z
Α	yeast	combustion	oxygen
В	glucose	combustion	steam
С	glucose	polymerisation	water
D	yeast	fermentation	glucose

- 39 Which statements about aqueous ethanoic acid are correct?
 - 1 It is an alkane.
 - 2 It reacts with sodium carbonate to form carbon dioxide.
 - 3 It changes the colour of litmus solution from blue to red.
 - 4 It is a hydrocarbon.
 - **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

40 The structure of a polymer is shown.

Which monomer forms this polymer?

- A ethane
- **B** ethene
- **C** propane
- **D** propene

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		2	e H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
	IIA				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	В	bromine 80	53	_	iodine 127	85	Ą	astatine -			
	5									sulfur 32										116		ermorium -
	>									ohosphorus 31												<u>.2</u>
	<u> </u>									silicon pho			_							4	1:	wium -
	_													\vdash						+		flero
	=				2	Δ	boron 11	13	A1	aluminium 27	31	Ga	galliun 70	49	드	indium 115	8	1L	thalliur 204			
											30	Zu	zinc 65	48	S	cadmium 112	80	ΕĤ	mercury 201	112	ပ်	copernicium
											29	O O	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
dn											28	z	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	darmstadtium -
Group											27	ပိ	cobalt 59	45	R	rhodium 103	77	_	iridium 192	109	¥	meitnerium -
		- :	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
					J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
						00	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>п</u>	tantalum 181	105	9	dubnium —
					ğ	ator	relat				22	ı	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium -
											21	လွ	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				в	:=	lithium 7	+	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ā	francium -

La Ce Pr Nd Ianthanum Cerium Prassodymium Cerium Prassodymium Cerium Cerium	Pm promethium	Sm samarium 150	Eu europium 152	Gd	<u>a</u>			8	2	2	_	
cerium praseodymium ne 140 141	٤	samarium 150	europium 152	aadolinium		Δ	웃	Щ	T	Υp	Ρſ	
90 91				157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
i		94	92	96	26	86	66	100	101	102	103	
L B		Pu	Am	CB	益	₽	Es	Fm	Md	%	۲	
_		plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
- 232 231 238	ı	I	ı	ı	ı	1	ı	I	ı	ı	ı	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).